FOURIER TRANSFORMS

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment.

Post date: 23 June 2025.

The Fourier series gives a series representation of a periodic function. The *Fourier transform* generalizes this idea to a function defined over an infinite range, that need not be periodic. In effect, we can think of the function has having an infinite period.

Saff and Snider give a heuristic derivation of the Fourier transform in Section 8.2. The results are that the Fourier transform of a function $F\left(t\right)$ is given by

$$G(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(t) e^{-i\omega t} dt \tag{1}$$

with the inverse transform given by

$$F(t) = \int_{-\infty}^{\infty} G(\omega) e^{i\omega t} d\omega \tag{2}$$

Note that the location of the 2π varies among various books and computer programs. For example, Maple puts the $\frac{1}{2\pi}$ in front of the integral for the inverse transform and omits it in the definition of the original transform.

Fourier transforms can be calculated exactly only for a restricted set of functions F(t) due to the difficulty of doing the integrals. Here, we'll give a few examples of cases where $G(\omega)$ can actually be calculated exactly.

Example 1. Find the Fourier transform of

$$F(t) = e^{-|t|} \tag{3}$$

We can split this into two integrals as

$$G(\omega) = \frac{1}{2\pi} \int_{-\infty}^{0} e^{t-i\omega t} dt + \frac{1}{2\pi} \int_{0}^{\infty} e^{-t-i\omega t} dt$$
 (4)

$$= -\frac{1}{2\pi (i\omega - 1)} + \frac{1}{2\pi (i\omega + 1)}$$
 (5)

$$=\frac{1+i\omega}{2\pi(\omega^2+1)} + \frac{1-i\omega}{2\pi(\omega^2+1)} \tag{6}$$

$$=\frac{1}{\pi\left(\omega^2+1\right)}\tag{7}$$

Example 2. Find the Fourier transform of

$$F(t) = e^{-t^2} \tag{8}$$

We have

$$G_2(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-t^2 - i\omega t} dt \tag{9}$$

We can complete the square in the exponent to get

$$-t^2 - i\omega t = -\left(t + \frac{i\omega}{2}\right)^2 - \frac{\omega^2}{4} \tag{10}$$

so we have

$$G_2(\omega) = \frac{1}{2\pi} e^{-\omega^2/4} \int_{-\infty}^{\infty} e^{-(t+i\omega/2)^2} dt$$
 (11)

We can use the substitution

$$u = t + \frac{i\omega}{2} \tag{12}$$

The limits on the integral remain the same, from $u = -\infty$ to $u = \infty$, and dt = du, so we have

$$G_2(\omega) = \frac{1}{2\pi} e^{-\omega^2/4} \int_{-\infty}^{\infty} e^{-u^2} du$$
 (13)

The integral is a Gaussian integral, with the value

$$\int_{-\infty}^{\infty} e^{-u^2} du = \sqrt{\pi} \tag{14}$$

so the Fourier transform is

$$G_2(\omega) = \frac{1}{2\pi} e^{-\omega^2/4} \sqrt{\pi} = \frac{1}{2\sqrt{\pi}} e^{-\omega^2/4}$$
 (15)

Example 3. Find the Fourier transform of

$$F(t) = te^{-t^2} \tag{16}$$

This time, we're faced with the integral

$$G_3(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} t e^{-t^2 - i\omega t} dt$$
 (17)

Writing this as

$$G_3(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[te^{-t^2} \right] \left[e^{-i\omega t} \right] dt$$

we can integrate by parts to get

$$G_3(\omega) = \frac{1}{2\pi} \frac{e^{-t^2}}{-2} e^{-i\omega t} \Big|_{-\infty}^{\infty} - \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{-i\omega}{-2} e^{-t^2 - i\omega t} dt$$
 (18)

$$=0-0-\frac{i\omega}{4\pi}\int_{-\infty}^{\infty}e^{-t^2-i\omega t}dt\tag{19}$$

$$= -\frac{i\omega}{2} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-t^2 - i\omega t} dt \right]$$
 (20)

The remaining integral in the square brackets is the same as in Example 2, so the final transform is

$$G_3(\omega) = -\frac{i\omega}{2} \frac{1}{2\sqrt{\pi}} e^{-\omega^2/4} = -\frac{i\omega}{4\sqrt{\pi}} e^{-\omega^2/4}$$
 (21)

In this case, the transform is purely imaginary.

There's actually a faster way of finding the transform here. Taking the derivative of 9 with respect to ω (assuming we can differentiate inside the integral), we have

$$\frac{dG_2(\omega)}{d\omega} = -\frac{i}{2\pi} \int_{-\infty}^{\infty} t e^{-t^2 - i\omega t} dt = -iG_3(\omega)$$
 (22)

From 15 we have

$$\frac{dG_2(\omega)}{d\omega} = -\frac{\omega}{4\sqrt{\pi}}e^{-\omega^2/4} = -iG_3(\omega)$$
 (23)

so

$$G_3(\omega) = -\frac{i\omega}{4\sqrt{\pi}}e^{-\omega^2/4} \tag{24}$$

which agrees with 21.

PINGBACKS

Pingback: Fourier transform - step function
Pingback: Fourier transform - finite wave train
Pingback: Fourier transform and the vibrating str

Pingback: Fourier transform and the vibrating string

Pingback: Fourier transform and heat flow

Pingback: Mellin transform